Complete intersections and Gorenstein ideals
نویسندگان
چکیده
منابع مشابه
Complete Intersections in Toric Ideals
We present examples which show that in dimension higher than one or codimension higher than two, there exist toric ideals IA such that no binomial ideal contained in IA and of the same dimension is a complete intersection. This result has important implications in sparse elimination theory and in the study of the Horn system of partial differential equations.
متن کاملMonomial Ideals, Almost Complete Intersections and the Weak Lefschetz Property
has maximal rank, i.e. it is injective or surjective. In this case, the linear form L is called a Lefschetz element of A. (We will often abuse notation and say that the corresponding ideal has the WLP.) The Lefschetz elements of A form a Zariski open, possibly empty, subset of (A)1. Part of the great interest in the WLP stems from the fact that its presence puts severe constraints on the possib...
متن کاملMonomial Ideals and the Gorenstein Liaison Class of a Complete Intersection
In an earlier work the authors described a mechanism for lifting monomial ideals to reduced unions of linear varieties. When the monomial ideal is Cohen-Macaulay (including Artinian), the corresponding union of linear varieties is arithmetically CohenMacaulay. The first main result of this paper is that if the monomial ideal is Artinian then the corresponding union is in the Gorenstein linkage ...
متن کاملTowards the Mirror Symmetry for Calabi-Yau Complete Intersections in Gorenstein Toric Fano Varieties
We propose a combinatorical duality for lattice polyhedra which conjecturally gives rise to the pairs of mirror symmetric families of Calabi-Yau complete intersections in toric Fano varieties with Gorenstein singularities. Our construction is a generalization of the polar duality proposed by Batyrev for the case of hypersurfaces.
متن کاملGood Ideals in Gorenstein Local Rings
Let I be an m-primary ideal in a Gorenstein local ring (A,m) with dimA = d, and assume that I contains a parameter ideal Q in A as a reduction. We say that I is a good ideal in A if G = ∑ n≥0 I n/In+1 is a Gorenstein ring with a(G) = 1−d. The associated graded ring G of I is a Gorenstein ring with a(G) = −d if and only if I = Q. Hence good ideals in our sense are good ones next to the parameter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1978
ISSN: 0021-8693
DOI: 10.1016/0021-8693(78)90274-0